The visual fields of the Aegypiinae vultures have been shown to be adapted primarily to meet two key perceptual challenges of their obligate carrion-feeding behaviour: scanning the ground and preventing the sun’s image falling upon the retina. However, field observations have shown that foraging White-headed Vultures Trigonoceps occipitalis are not exclusively carrion-feeders; they are also facultative predators of live prey. Such feeding is likely to present perceptual challenges that are additional to those posed by carrion-feeding. Binocularity is the key component of all visual fields and in birds it is thought to function primarily in the accurate placement and time of contact of the talons and bill, especially in the location and seizure of food items. We determined visual fields in White-headed Vultures and compared them with those of two species of carrion-eating Gyps vultures. The visual field of White-headed Vultures has more similarities with those of predatory raptors (e.g. accipitrid hawks) than with the taxonomically more closely related Gyps vultures. Maximum binocular field width in White-headed Vultures (30°) is significantly wider than that in Gyps vultures (20°). The broader binocular fields in White-headed Vultures probably facilitate accurate placement and timing of the talons when capturing evasive live prey.

Keywords: binocular vision, blind area, foraging, Gyps, vision, vulture.

The visual field topographies of vultures (Accipitridae, Aegypiinae) have been shown to be adapted primarily for scanning the ground below and preventing the eyes from imaging the sun (Martin et al. 2012). These visual field characteristics play a vital role in allowing vultures, generally considered to be obligate scavengers (Mundy et al. 1992), to locate suitable food sources. However, recent field observations indicate that one species, White-headed Vultures Trigonoceps occipitalis, is a scavenger that also regularly takes evasive live prey (Murn 2014). The requirements of the visual system for such hunting behaviour would be expected to be markedly different to those needed solely for scavenging (Martin 2014, Potier et al. 2016).

Visual fields define the space around an animal from which information can be retrieved at any instant (Martin 2007), and subtleties in visual field topography can be attributed to species-specific foraging ecology, as opposed to being only a consequence of shared ancestry (Martin 2009, 2014). Binocularity is an important component of all visual fields. In birds, binocularity is thought to function primarily in the detection of symmetrical optic flow-fields that provide almost instantaneous information on direction of travel and time-to-contact with an object, as opposed to detecting relative depth based upon static stereoscopic cues, which is often considered the prime function of binocularity in mammals (Martin 2009, Martin & Portugal 2011). Small-scale differences in visual fields, including the degree of binocularity, are evident both between and within bird groups, depending on the extent that vision is used for foraging (Guillemain et al. 2002).

In general, among active hunting accipiters, binocular fields are broader and total visual fields narrower than those of species that rely primarily upon scavenging for static items (O’Rourke et al. 2010, Martin et al. 2012, Martin 2014, Potier et al. 2016). We predicted that the visual fields of White-headed Vultures would have binocularity characteristics more typical of predatory raptors, as opposed to the carrion-feeding vultures to which they are most closely related.

METHODS

Visual fields were measured in two individuals each of White-headed Vulture and of two species that are exclusively carrion-feeding: African White-backed Gyps africanus and Eurasian Griffon Gyps fulvus Vultures. The birds were held in the collection of the Hawk Conservancy Trust (HCT; Hampshire, UK). Birds were adults and had been held at the HCT for a number of years. Birds were studied in the clinical facilities block of
the HCT, close to their holding aviaries, and were returned to their aviaries soon after measurement. The Griffon and White-backed Vultures were measured during a previous study, the full details of which can be found in Martin et al. (2012), with further detailed methodological information in Martin and Portugal (2011). Briefly, the ophthalmoscopic reflex technique (Martin 2009) was used to measure the characteristics of visual fields in alert birds (Martin & Coetzee 2004). Each bird was hand-held with the head and neck resting on a foam rubber cradle with the body and legs supported by one of the authors (C.P.M.). Aluminium and steel bill holders maintained each bird’s head position at the centre of the visual perimeter, with the bill held in place by Micropore Tape™. The perimeter’s coordinate system followed conventional latitude and longitude, with the equator aligned vertically in the median sagittal plane of the head (a vertical plane that divides the head symmetrically into its left and right halves) and this coordinate system is used for the presentation of visual field data (Figs 1 and 2). For each individual, the measured visual field parameters were very similar for repeated measurements at a number of selected elevations (± 2°), and differences between individuals for each species at the same elevation did not differ by more than 5° and typically < 2°.

In all species, eye movements were apparent and, as in other birds, were non-conjugate (Martin 2007). Due to time constraints on holding the birds in the apparatus, we were only able to quantify eye movement amplitude at a small number of elevations around the horizontal plane where binocular field width was close to the maximum and eye movements typically have their largest amplitude (Martin 2007). We observed spontaneous eye movements away from their forward positions, which defined the maximum degree of binocular overlap that we report here. Amplitudes of eye movements were determined by making a rapid series of observations of the position of the retinal margin as the eye spontaneously moved from the forward resting position. In this way the maximum and minimum position at which the retinal margin could be seen for a given elevation in the frontal hemisphere was determined and the difference between them defined the maximum amplitude of eye movement at that elevation.

Data presented are mean visual field data for the two carrion-feeding vulture species combined, and the White-headed Vultures (n = 2).

RESULTS

The mean angular separation of the retinal field margins as a function of elevation in the median sagittal plane of the head are shown in Figure 1. Maps based on these data show the visual fields (Fig. 2) in the frontal sector (Fig. 2c,d) and in a horizontal section (Fig. 2e,f). The visual fields of individual eyes were of similar width in the Gyps (White-backed and Griffon Vultures) and Trigonoceps (White-headed Vulture) species, 153° and 155°, respectively (Fig. 2e,f), but differences in their positions in the skull resulted in differences in the main parameters of the visual fields. Thus in Gyps the

Figure 1. Mean (± se) angular separation of the retinal field margins as a function of elevation in the median sagittal plane in vultures. Positive values indicate overlap of the field margins (binocular vision), and negative values indicate the width of the blind areas. The coordinate system is such that the horizontal plane is defined by the 9° (in front of the head) and 0° lies directly above the head. These directions are indicated in the outline scaled drawing of the head of a Griffon Vulture. The projection of the eye–bill tip axis is also indicated. The value of the binocular field width at elevation 110° could not be determined directly because of the intrusion of the bill-holder into the view of the eye and this value was therefore interpolated from the mean recorded field width values at 100° and 120° elevations. The upper dashed line represents the mean values for White-headed Vultures, and the black solid line the mean for two carrion-feeding vulture species (White-backed and Griffon; n = 2 for all species). The visual field topography of White-headed Vultures was significantly different from that of the other two vulture species.
binocular field was smaller in both width and vertical height compared with White-headed Vultures. All the birds had extensive blind areas above and behind the head, and the blind region behind the head in White-headed Vultures was 10° broader than in Gyps. This can be correlated with the more forward eye positions that result in greater binocular overlap in White-headed Vultures. Thus, although the fields of individual eyes were similar in White-headed Vultures and Gyps, and the visual field topographies of all three vulture species showed a similar general pattern in shape (Fig. 2c,d), the dimensions of each key component (binocular width, binocular vertical height, blind sector widths above and behind the head) differed. These differences were shown to be statistically different, the White-headed Vultures having on average 2.3× greater binocular field area across all elevations in comparison with the Gyps species (overall visual field, ANOVA $F = 3.97$, $P < 0.05$).

DISCUSSION

The visual fields of White-headed Vulture were significantly different from those of the obligate carrion-feeding Gyps vultures. This can be interpreted as corroborating field observations of White-headed Vultures as hunters of evasive prey (Murn 2014). Compared with carrion-feeding vulture species, the White-
headed Vultures had a larger binocular field and it is likely that this increased binocularuity increases precision in the placement and timing of the talons and bill when capturing an evasive prey item (Martin 2009). High precision, especially of timing, is not such a vital component when approaching carrion.

The trade-off between frontal vision (and binocularuity) and the necessity for vigilance against potential predators (i.e. minimizing the blind area behind the head) is a characteristic that shapes all avian visual fields (Martin 2014). However, for vultures, which have few natural predators, this compromise between frontal and rear visual balance may be biased towards requirements for frontal and lateral vision, and the need to be vigilant for conspecifics or other raptors (Kane et al. 2014) that may have successfully located a food source. For White-headed Vultures, which are often solitary foragers (Mundy 1982), this requisite for conspecific surveillance is reduced and perhaps outweighed by the necessity for accurate direction of the talons and bill when capturing live prey. It is likely therefore that this social vs. non-social foraging element is an important contributing factor to the development and maintenance of significant differences in visual fields between the obligate carrion-eating birds and the more predatory White-headed Vulture.

White-headed Vulture showed visual characteristics that are more similar to some phylogenetically distant diurnal hunting raptors (Griffiths et al. 2007, O’Rourke et al. 2010) as opposed to closely related carrion-feeding vultures (Martin et al. 2012). Maximum binocular field width in White-headed Vultures (30°) is very similar to the widths of the binocular fields in Red-tailed Hawks Buteo jamaicensis, Cooper’s Hawks Accipiter cooperii and American Kestrels Falco sparverius (33°, 36° and 33°, respectively) (O’Rourke et al. 2010), and is 10° wider than in carrion-feeding vultures (Martin et al. 2012). The fine-tuning of visual fields that we have shown in these vulture species is similar to the kinds of fine-tuning with respect to differences in the foraging modes reported among species of ducks (Martin et al. 2007), ibises (Martin & Portugal 2011) and shorebirds (Martin & Piersma 2009). This lends further support to the hypothesis that vision is as finely tuned to foraging mode as are other morphologies associated with prey capture such as the shape, strength, and dimension of talons and bills (Fowler et al. 2009, Martin 2017).

The visual fields of White-headed Vultures corroborate observations from the field that this species is predatory. That the vision of White-headed Vultures shows adaptation to a predatory foraging mode suggests that such behaviour must have occurred over an extended time period and the recent observations (Murn 2014) are not simply evidence of opportunistic behaviour or isolated incidences.

The authors would like to thank Mike Riley from the Hawk Conservancy Trust for his valuable assistance. We are grateful to two anonymous reviewers for constructive feedback.

REFERENCES

Received 8 November 2016; revision accepted 10 December 2016.

Associate Editor: Arjun Amar.