The anabantoids are a group of c. 137 species of air-breathing freshwater fishes found in Africa and southern Asia. All anabantoids have a pair of suprabranchial chambers that each house an air-breathing organ known as the labyrinth apparatus: a complex bony structure lined with thin, highly vascularised respiratory epithelium. The labyrinth apparatus allows anabantoids to extract oxygen from air and is a morpho-physiological innovation that has had a dramatic influence on the behaviour of these fishes. Air-breathing influences a wide range of anabantoid behaviours, including territorial displays, courtship and breeding and parental care and also equips these fishes to persist in hypoxic and polluted water. These traits also make anabantoids successful invaders of novel habitats, a global problem compounded by their popularity in the aquarium trade. By reviewing the functionality and evolution of air breathing in anabantoids, this review aims to examine the role of the labyrinth apparatus in modulating behaviour within this group. The anabantoids are a fascinating group and have often been cited as a model organism due to the stereotypical and easily identifiable behaviours that they adopt during social interactions. They also provide a unique opportunity to further our understanding about how fishes adapt their behaviour in response to an extreme environment, whilst limited by their own physiological constraints.

Key words: air-breathing; *Betta splendens*; facultative; gourami; obligate; respiration.

INTRODUCTION

A defining characteristic of the majority of fish species is their reliance upon their gills as the primary organ for gas exchange (Evans *et al.*, 2005). In certain environments, seasonal or continuous aquatic hypoxia has led some species to supplement aquatic oxygen uptake with aerial respiration (Carter, 1931; Carter & Beadle, 1931; Johansen, 1970; Randall, 1981; Graham, 1997). To cope with hypoxic environments, evolution has favoured the development of modified breathing structures such as lungs, labyrinth organs, the gut or the skin (Johansen, 1970; Graham, 1997).
Air-breathing in fishes first appeared during the late Silurian or early Devonian period, c. 438–408 million years ago and has evolved independently in multiple lineages (Barrell, 1916; Dutta & Munshi, 1985; Graham, 1997). Today, there are nearly 1000 species of air breathing fishes, the majority of which are found in bodies of stagnant, tropical fresh water (Graham, 2011). All air-breathing fishes are bimodal breathers, retaining their gills for aquatic gas exchange and particularly for the excretion of ammonia and carbon dioxide (Randall, 1981; Graham, 1997; Randle & Chapman, 2005), while also varying greatly in their dependence on aquatic respiration in normoxia. The greatest degree of diversity among air-breathing fishes is displayed in their different methods of aerial respiration (Johansen, 1970; Herbert & Wells, 2001; Johansson et al., 2014).

Air-breathing fishes are on a spectrum, spanning from facultative to obligate air-breathers. Facultative air breathers do not typically breathe air and mostly only do so when dissolved oxygen (DO) is low or when oxygen demands are high, but see McKenzie et al. (2015) for exceptions. In contrast, obligate air breathers use aerial respiration at all times, regardless of aquatic conditions or their oxygen demands, due to their reduced gill surface areas. This distinction between facultative and obligate breathers is not always entirely distinct, as many air-breathing fishes can modulate their aerial uptake relative to demand and aerial uptake varies within individuals (McKenzie et al., 2015), between individuals and between species. For air-breathing fishes, there are stereotyped and distinct reflex behaviours, driven by oxygen-sensitive chemoreceptors, that are associated with the necessity to travel to the surface to gulp air. Trade-offs between the requirements for oxygen and the risk of being preyed upon (McKenzie et al., 2015), for example, might drive the evolution of unusual behaviours and create a more complex respiratory situation for such fish species (Shingles et al., 2005). As such, air-breathing fish species, like the anabantoids (Perciformes: Anabantoiodei), offer an intriguing model group to understand the evolutionary pressures that have driven these interactions between physiology and behaviour and how these two key factors are traded off against each other.

THE ANABANTOIDS

The anabantoids are a group of obligatory air-breathing freshwater fishes found in Africa and southern Asia that evolved some 60 million years ago (Berra, 2001; Goldstein, 2001; Rüber, 2009). Consisting of c. 137 species (Fig. 1) across three families (Anabantoidae, Helostomatidae and Osphronemidae), all have a pair of suprabranchial chambers (SBC) that directly extend either side of the first epibranchial gill arch into the opercular cavity (Rüber et al., 2004; Kang & Lee, 2010; Huang et al., 2011). Each SBC houses an air-breathing organ (ABO) known as the labyrinth apparatus (Fig. 2): a complex bony structure lined with thin, highly vascularized respiratory epithelium.

Filling most of the SBC, the labyrinth organ’s intricate arrangement is due to the many folds that line its surface. This elaborate modification vastly increases the organ’s surface area to enhance oxygen uptake. Various other structural modifications, such as its dorsal location, ensure that inhaled air can flow into the chamber with relative ease (Shadwick & Lauder, 2006). A double-pump mechanism, along with the short diffusion distance across the capillaries and the large surface area of the labyrinth organ itself, ensure an effective alternative for acquiring oxygen to aquatic gaseous exchange.
mtDNA60 (BI4)

Fig. 1. Reconstructed phylogeny of the Anabantoidei using a Bayesian phylogenetic approach based on the mtDNA60 (B14) analysis. Subfamilies are indicated within the bars designating the three anabantoid families. The Osphronemidae subfamilies are (A) Macropodisinae, (B) Luciocephalinae, (C) Osphroneminae and (D) Belontiinae, whereas the Anabantidae subfamilies are (E) Anabantinae and (F) Ctenopominae. Reproduced with permission from Rüber et al. (2006).

(Hughes & Singh, 1970). Owing to its encroachment into the opercular cavity, however, the labyrinth organ has fundamentally altered gill size within this group, resulting in relatively smaller sets of gills compared with non-air-breathing species (Hughes & Singh, 1970; Shadwick & Lauder, 2006).

Aerial respiration in anabantoids is a multi-faceted process, whereby various instinctive reflex actions occur nearly simultaneously and using X-ray films, Peters (1978)
was able to characterize the mechanics of this procedure. Using a double-pump mechanism, ventilation of the ABO occurs via an alternating action of sucking and pumping of the buccal cavity and opercular chambers. The double-pump, or biphasic, mechanism involves the expansion and contraction of the opercular chamber, which in turn drives a reversed stream of water up into the SBC, forcing out any gas still present within. At this point, buccal expansion removes this gas into the mouth where it can either be exhaled as a bubble if under water, or straight into the air if at the surface (Graham, 1997). Notably, the chamber is entirely emptied of gas on exhalation in most instances (Peters, 1978). With biphasic air ventilation, inhalation follows exhalation and any new air that is superfluous to demands is expelled via the operculae (Peters, 1978; Graham, 1997). Using cineradiographic and electromyography (EMG) data, Liem (1987) updated the description of the air-breathing mechanics for most anabantoids from biphasic (reversal, expansive), to be described as quadriphasic. This was to include the preparatory and compressive stages of the breathing process (preparatory, reversal, expansive, compressive). The systemic circulatory system ensures a constant flow of partially oxygenated blood from the heart, via the anterior gill arches (first and second arches), to the labyrinth organ (Fig. 3). Gas exchange occurs while the air bubble is held within the SBC and partially oxygenated blood flows through it, such that the blood becomes fully oxygenated before circulating back to the heart (Burggren, 1979).

Anabantoid fishes are not born with functional labyrinth organs (Mendez-Sanchez & Burggren, 2014). Air gulping has been observed in the young of various species, though...
this behaviour occurs long before the labyrinth apparatus has fully formed (Graham, 1997). The labyrinth organ grows throughout development and juvenile fishes remain reliant upon their gills until maturity (Pinter, 1986). Early-life experiences, such as access to air, influence the effectiveness of the labyrinth organ by altering capillary density of the surface epithelium (Mendez-Sanchez & Burggren, 2014). Individual factors such as fish body size, shape and skull structure are important in driving labyrinth organ morphology (i.e. size, shape and complexity) yet there is no significant evidence of a pattern in its structure among species (Graham, 1997).

THE EVOLUTION OF THE LABYRINTH ORGAN

The labyrinth organ essentially prevents asphyxiation in fishes that inhabit areas low in DO, by offering a viable alternative and supplement to aquatic respiration (Graham, 1997). The origins, therefore, of the labyrinth organ tie effectively with the fishes surrounding environment, with aquatic hypoxia being the most likely candidate in driving its evolution (Packard, 1974; Blank & Burggren, 2014). Given the array of costs and benefits associated with ABO evolution, it is difficult to predict the suite of environmental conditions that favour the evolution of organs such as the labyrinth apparatus. This is further complicated given the evident success of non-air-breathing species in hypoxic habitats, which have forsaken the development of an ABO altogether despite the low-oxygen conditions. For example, it is established that many non-air-breathing fishes in Lake Victoria can survive in various hypoxic areas by developing alternative adaptations such as larger gill surface areas or higher haemoglobin concentrations (Chapman et al., 2002). Indeed, a persistent theme appears to be that of metabolic efficiency, whereby these species have responded to hypoxia by becoming more tolerant, rather than developing a new organ altogether.

It is possible to deduce the sequence of events, based on the role of aquatic hypoxia, which resulted in the development of ABOs like the labyrinth organ (Fig. 2; Blank & Burggren, 2014). It is likely that the first gill arch of these ancestral variants was located relatively close to the mouth and during hypoxic events, fish could use buccal pumping at the water surface to sustain oxygen uptake (aquatic surface respiration, ASR). ASR would have provided a selective advantage in the hypoxic environment and is likely to have been the precursor for air-breathing (Kramer & Graham, 1976). Given its location, the first gill arch was able to extract oxygen from small quantities of air. As provided a selective advantage, the arch became larger and more vascularized to supplement the increased respiratory demands. The buccal cavity in which the first gill arch lies, however, is a relatively small and confined space that is primarily used for feeding (Fig. 2). As such, a compromise was needed for the requirements for feeding and ventilation. Thus, with little room to expand the buccal cavity, part of the gill arch extended away from the cavity and developed into its own stand-alone organ. With time, it became a highly convoluted and vascularized, yet introverted, delicate mass of bone and capillaries that essentially enhanced the surface area of the organ for gaseous exchange. This primitive ABO eventually developed into the labyrinth organ that is present today (Randall, 1981; Goldstein, 2001).

ABOs have provided an opportunity for further diversification as populations of bimodal breathers have been able to thrive in habitats where unimodal gill breathers could not. The lack of competition has facilitated adaptive radiation and consequently
allowed them to expand into various ecological niches. In these instances, the ABO has retained the all-important respiratory functions yet there have been dramatic morphological modifications in jaw shape, diet and dentition amongst the various species (Graham, 1997). The labyrinth organ has also permeated into other facets of life, mediating behavioural responses in the anabantoids. Territorial displays, nest building and parental care are just a few examples of where this group have been influenced by the need to acquire oxygen via aerial gas exchange (Graham, 1997). Some Anabantoid species, like members of the genus *Sandelia* Castelnau 1861, have even regressed, losing their ABO. Many have retained a complex labyrinth organ to facilitate air-breathing in their typical environmental; others, however, have flourished in more oxygenated habitats and, consequently, the ABO of these members has reverted into a far simpler organ (Helfman *et al.*, 2009).

BEHAVIOUR AND THE LABYRINTH ORGAN

TERRITORIAL DEFENCE

Animals use ritualized threat displays to warn off rivals from a territory, to ensure exclusive access to important resources such as food, shelter or mates. The nature of threat displays observed amongst members of the Anabantoid group during such territorial disputes is ubiquitous, deepening their body colour, erecting their fins, tail-beating and flaring their gill covers (opercula, Fig. 4), before escalating to chasing and biting the rival (Miller & Miller, 1970; Meliska *et al.*, 1980a; Tooker & Miller, 1980). A key feature of these displays is their intensity, significantly increasing oxygen consumption in order to meet increased metabolic requirements (Castro *et al.*, 2006). The opercular flare, in particular, compounds this condition as it prevents water (an already poor source of DO) from effectively passing over gills and forces an individual into a self-imposed hypoxic state (Abrahams *et al.*, 2005). Owing to their costly nature, the opercular flare is only used as an acute response to other males and is swiftly swapped for less costly behaviours, such as fin flaring, against persistent intruders (Forsatkar *et al.*, 2016). As such, the duration of opercular and dorsal-fin flaring relates to an individual’s condition and can subsequently be used to indicate...
the winner of an interaction (Simpson, 1968; Evans, 1985; Abrahams et al., 2005). Furthermore, the duration of opercular flaring and tail slashing positively correlates with the frequency of air breathing (Dore et al., 1978; Meliska et al., 1980b), suggesting that these activities increase metabolism or reduce aquatic gas exchange (Alton et al., 2013). Consequently, individuals need to respond to the increased energetic requirements placed on their bodies during these bouts of extreme activity through the rapid acquisition of more oxygen.

This is where the labyrinth organ has been incorporated to meet these demands. During male–male interactions, Anabantoid species use aerial oxygen uptake to supplement their respiratory needs [Fig. 5(d); Alton et al., 2013] and this is particularly evident during aggressive displays when metabolic rate is increased [Fig. 5(a)]. This is probably as a result of the limited capabilities of their gills i.e. their relatively small surface area and the increase in oxygen requirements as a result of display (Fig. 5; Alton et al., 2013). This is not to say that the labyrinth organ completely fulfils metabolic requirements and it too has limited surface uptake capabilities [Fig. 5(c), (e)]. To counter this problem, individuals have to take more frequent trips to the surface to take more breaths [Fig. 5(b); Kramer & Graham, 1976; Graham & Baird, 1982; Chapman & Chapman, 1994; Graham, 1997; Alton et al., 2013]. Interestingly, in male Siamese fighting fish Betta splendens Regan 1910 the amount of oxygen uptake per breath at the surface does not change significantly when comparing males at rest v. males displaying, suggesting the amount of oxygen uptake per breath is already at a maximal level and explains why more breaths are required at the surface during display, as opposed to more O2 per breath (Fig. 5; Alton et al., 2013).

Such constraints have resulted in the evolution of what appears to be what might be termed a gentleman’s agreement of synchronous air-breathing between sparring individuals, whereby one male will lead the other to the surface to obtain air (Randle & Chapman, 2005; Chapman & Mckenzie, 2009; Alton et al., 2013). One possible explanation for such behaviour is related to the need to reduce the likelihood of being preyed upon from above. The low DO content of the water generally precludes large fishes from being present and the main threat to most anabantoids are small piscivorous birds, such as members of the Coraciiformes group. Synchronous air-breathing, like shoaling, offers a dilution effect against such predation, reducing the chance for an individual male of being attacked (Kramer & Graham, 1976). This behaviour, however, could be construed as unintuitive. A fish that is tiring from intense displaying and needs to replenish oxygen stores from the surface would, in theory, provide an easy target for the other duelling male to attack. A failure to successfully win the antagonistic interaction at this point, however, would result in depleted oxygen reserves and opponent male returning from the surface with an oxygen-laden labyrinth organ. This situation becomes even more intriguing when taking into consideration that O2 per breath is correlated with body mass (Fig. 6), yet males of different body masses will engage in synchronous breathing.

Ascertaining the fitness benefit of such a non-intuitive behaviour is difficult, even more so given that synchronous air-breathing is found throughout non-aggressive species; Corydoras Lacépède 1803 species are air-breathers that use synchronous air-breathing purely for safety in numbers (Kramer & McClure, 1980). In the case of the anabantoids, it is possible that the labyrinth organ has facilitated the development of synchronous air-breathing behaviour, as the requirements for surface breathing can
Fig. 5. The effect of display behaviour on (a) total rate of oxygen uptake, (b) air-breathing frequency, (c) aerial rate of oxygen uptake, (d) aquatic rate of oxygen uptake, (e) oxygen uptake per breath, (f) CO₂ release per breath, (g) aerial rate of CO₂ release and (h) aerial respiratory exchange ratio (i.e. CO₂ release divided by O₂ uptake). Traits that are significantly associated with mass are presented adjusted to a mean mass of 1.5 g using parameter estimates from Table 1 of Alton et al., 2013. Data are shown as mean ± s.e. [n = 13 for resting (Rest) and n = 12 for displaying (Disp) fish]. Significant differences between resting and displaying fish are indicated: **P < 0.01; ***P < 0.001. Reproduced with permission from Alton et al., 2013.
relay information about the physiological state of each male. For instance, subordinate males of various bird and fish species adopt appeasement postures to prevent encounters from escalating into harmful events and synchronous air-breathing may be an example of this (Keenleyside, 1979). By following a male to the water surface, a rival is able to defend its territory whilst also reducing the risk of predation and of either coming to physical injury. Individuals who share similar morphologies may also encourage synchronous air-breathing.

The labyrinth organ facilitates aggressive displays during male–male interactions and also adds another dimension of social interaction through synchronous air-breathing. Social exposure amongst the anabantoids is tied to the habitat in which they reside, be it isolated in a pond or sharing a body of water with a mass of individuals. Consequently, territorial disputes can be influenced by the degree of prior social stimulation an individual encounters, i.e. isolation or combat exposure. Social isolation has been observed to both increase (Davis, 1975; Miley & Burack, 1977; Halperin & Dunham, 1993) and decrease antagonistic tendencies (Clayton & Hinde, 1967; Meliska et al., 1980a) across various Anabantoid species. In one case, social isolation initially decreased the readiness to display in male *B. splendens* but, after priming, males were more aggressive (Halperin et al., 1992). Davis et al. (1974) demonstrated that social isolation enhanced male and female paradise fish *Macropodus opercularis* (L. 1758) aggression with no effect on the amount of air gulping, which in other species has been shown to increase during vigorous displays to supply the requisite oxygen to perform the behaviour. It is possible that metabolic requirements are subject to behavioural modulation, whereby social interactions or predator stimuli override the metabolic response amongst the anabantoids and other air-breathing species. When isolated, individuals delay surfacing for as long as physiologically possible until the need for air takes priority over risk of predation (Sloman et al., 2009) (Fig. 7). Herbert & Wells (2001) reported that exposure to a model predator resulted in a decrease in air-breathing frequency in the blue gourami *Trichopodus trichopterus* (Pallas 1770), whilst other non-Anabantoid fish species are known to forsake air-breathing until night when the risk of predation is comparatively lower than the day (Grigg, 1965). These examples suggest that there is a trade-off between satisfying metabolic needs and the
risk of mortality during states of hypoxia, manifesting as a reduction of air-breathing behaviour (Fig. 7).

AUDIENCE EFFECTS AND SOCIALITY

The labyrinth organ and the requirement for oxygen intake from the surface, has resulted in an intricate series of ritualized displays to communicate information about physiological condition, breeding status and territoriality in most Anabantoid species. Such communications can take place between multiple males, or between males and females. When considering social exposure, it is important to consider that signals are likely to occur within a network and not simply between a single pair comprising a receiver and a signaller (McGregor, 1993; McGregor & Peake, 2000) unlike, for example, the situation which is often studied under artificial circumstances with just two male *B. splendens* present. Signals aimed at one individual can be received by many others within a social network, with a signal travelling past the targeted receiver and interpreted by any other individual present or able to observe the signal or interaction (Zahavi, 1979). Audiences, comprising both males and females, can eavesdrop to gain information from an interaction, such as perceived health of an individual, without partaking in the display. This results in no cost or risk to the audience member (McGregor, 1993; Oliveira et al., 1998; Doutrelant & McGregor, 2000; Peake, 2005; Bertucci et al., 2014). The presence of an audience, however, creates higher costs for losers, as the perceived loser from an interaction is more likely to be challenged by the observer. Males, therefore, are expected to alter their behaviour in the presence of an audience (Doutrelant et al., 2001; Matos et al., 2003) and these behavioural alterations in an individual’s behaviour in response to being observed by conspecifics are termed audience effects (Marler et al., 1986).

During territorial displays or bouts of aggression, the costs and benefits of winning or losing vary differently in the anabantoids, depending on whether the audience is male or female (Matos & McGregor, 2002). When the audience is male, the two duelling males are more aggressive from the start of the conflict, performing more bites and rapidly escalating the conflict to more physical contact as opposed to ritualized displays (Dzieweczynski & Perazio, 2012). A male observer that is watching the interaction
adds additional costs to the duelling pair, either through increased energy expenditure as a result of a more intense duel, greater risk of injury, or a carry-over effect as a result of the interaction being observed (Matos & McGregor, 2002). Carry-over effects are primarily dominated by the likelihood of the loser of the interaction being immediately challenged by the audience male (Oliveira et al., 1998), while observing females will direct more interest towards the winner (Doutrelant & McGregor, 2000). In the presence of a female audience, males reduce their aggression by decreasing the number of physical attacks, such as biting and increasing the frequency of visual displays, *i.e.* tail beating (Doutrelant et al., 2001; Dziewczynski & Perazio, 2012). Males must make a trade-off between being aggressive enough with the duelling male to win an interaction, but not scare away a potential female by putting them at risk of harm or being perceived as overtly aggressive (Matos & McGregor, 2002). Moreover, the degree to which an audience alters a male’s behaviour depends upon the individual’s reproductive state (Dziewczynski et al., 2005, 2006), resources (Dziewczynski & Walsh, 2010) and familiarity with their opponent and audience (Dziewczynski et al., 2011, 2012; Dziewczynski & Perazio, 2012; Bertucci et al., 2014).

Audience effects have also been observed in male–female interactions (Dziewczynski et al., 2009; Dziewczynski & Walsh, 2010) and female–female interactions (Dziewczynski et al., 2014a). During courtship with a female, males increase their opercular flaring, fin spreading and nest monitoring in the presence of an audience male rival. This is thought to be an attempt to outcompete the rival male for the female’s attention, while simultaneously reporting their territorial status to the rival male (Dziewczynski et al., 2009; Dziewczynski & Walsh, 2010). The presence of a rival male, however, can also cause a reduction in courtship behaviours directed at the female, as males chose to behave aggressively towards the rival (Bronstein, 1982), rather than display to the female. The differences between these studies may be in part due to individual differences or due to the use of a dummy female in Dziewczynski et al.’s (2009) study, compared with live females by Bronstein (1982) and Dziewczynski & Walsh (2010). Females also increase their display behaviour in the presence of a male audience in an attempt to advertise their presence to both males (Dziewczynski & Walsh, 2010).

Encounters between rival males are also known to be affected by prior exposure to a rival (Frey & Miller, 1972; Wallen & Wojciechowski-Metzlar, 1985; Oliveira et al., 1998; Karino & Someya, 2007), facilitating the development of a dominance hierarchy amongst groups. Prior winners are likely to be more aggressive and win their next interaction (the winner effect), while losers are less aggressive in future conflicts and flee sooner, losing the duel (Dziewczynski et al., 2012). This reduction in aggression between known individuals is what allows for the formation of dominance hierarchies. Priming (individuals who observed a contest between conspecifics) can also facilitate winning, with primed male *B. splendens* being more aggressive, accompanied by a higher probability of winning, during subsequent encounters than naïve males (individuals with no prior stimulus) (Karino & Someya, 2007). Hollis et al. (1995) reported a similar effect amongst male *T. trichopterus*, whereby individuals that had been primed were more likely to defeat their naïve rivals and win later encounters. Priming, however, does not always have this effect. Halperin et al. (1998) found that priming male *B. splendens* caused males to escalate rapidly, but primed individuals lost more interactions than unprimed individuals. Priming was concluded to be a form of cheating and primed individuals became exhausted during interactions and subsequently lost.
Moreover, those that lost their first encounter would go on to lose their next encounter, being more passive and more likely to retreat in subsequent encounters and being under a ‘loser effect’ (Frey & Miller, 1972; Francis, 1983; Hollis et al., 1995). The changes in an individual’s aggressive intensity in future conflicts is probably due to a self-assessment of their own fighting ability (Hsu & Wolf, 2001; Hsu et al., 2009). By winning or losing an individual adjusts how they perceive their fixed fighting ability, regardless of the winner’s prior experience and subsequently respond differently in future interactions.

The physiological mechanisms responsible for priming in fishes are still not clear. Although based on hormonal studies on cichlids, such acts stimulate the release of androgens like testosterone that are known to enhance fighting capabilities (Oliveira et al., 2001; Dijkstra et al., 2012). Given the importance of testosterone on other behaviours (e.g. parental behaviour; Kramer, 1971), this raises the question as to the effects of raised androgen levels on the use of the labyrinth organ. Research has yet to focus on this particular field although it is fair to assume that individuals that have recently won an antagonistic interaction will be in a heightened state of aggression and require more frequent trips to the water surface. Mitra & Sapolsky (2012) noted that androgens promote greater predator detection and this would be of great use for air-breathing fishes during states of hyperactivity, ensuring sustained survival compared with docile rivals.

COURTSHIP DISPLAY

Courtship displays amongst the anabantoids are typically dependent on the ability of males to evoke a reproductive state in a female. At the start of the spawning cycle males construct a nest at the centre of their territory (Picciolo, 1964). The presence of the nest can be used by females to identify male territory and stimulates the female to enter, even in the absence of a male (Braddock & Braddock, 1959). On encountering a potential mate, males will chase and vigorously display in an attempt to entice the female towards the nest (Braddock & Braddock, 1959; Bronstein, 1982; Miller & Jearld, 1983). The female is led to the nest by the male which will perform lateral displays to the female and then return to the nest in a zig-zag manner, regularly halting (Miller, 1964; Miller & Jearld, 1983). During courtship displays, males use the same behaviours as in territory defence, however, the frequency and intensity of these behaviours are altered, with males rarely biting (Simpson, 1968; Robertson & Sale, 1975; Forsatkar et al., 2016). Both chemical and visual cues are assessed during courtship, with female pheromones eliciting nesting behaviour in male *T. trichopterus* (Cheal & Davis, 1974). Additionally, visual cues are responsible for increased display intensity towards potential mates in males and females (Cheal & Davis, 1974). While courting a female, the male will alternate between displaying and nest building (Bronstein, 1982). Initially, females flee and hide, exhibiting submissive vertical bars, but after around 24 h, females are receptive to the male’s displays (Rainwater & Miller, 1968; Bronstein, 1982). Female *B. splendens* and *Trichogaster* Bloch & Schneider 1801 species, however, will often initiate sexual bouts with males (Rainwater & Miller, 1968; Miller & Jearld, 1983). If display movements are successful, the male will circle the female under the nest before eventually mounting the target mid-region, curving the body so that the head and tail touch, as the female turns 180° and lies motionless. From this position, the release and fertilization
of eggs occurs. Known as the Anabantoid embrace, this is a common form of copulation in the group and typically the male does not surface during this period (Rainwater & Miller, 1968; Bronstein, 1982; Miller & Jearld, 1983; Liengpornpan et al., 2006; Chandran et al., 2013; Biokani et al., 2014). If the female flees or is unreceptive to the display, however, the male increasingly becomes more aggressive towards the female (Rainwater & Miller, 1968).

The intensity of the fin and opercular displays of the males observed throughout these interactions has largely been facilitated by air-breathing at the water surface. Such high-intensity behaviours require more oxygen and the labyrinth organ allows for rapid acquisition of oxygen in low DO water to ensure individuals are able to continue displaying (Alton et al., 2013). This has subsequently had a knock-on effect on the importance of these behaviours as a reliable signal of male health; accurately communicating vitality to potential mates while acting as an indicator of quality to potential rival males (Abrahams et al., 2005). Broadly speaking, healthy individuals are able to sustain an opercular display for a longer time compared with those whose physiological condition has been compromised by disease or poor nutrition. This is because opercular displays are an inherently stressful act, inhibiting aquatic gas exchange by preventing the flow of water across the gills. Individuals of a reduced condition are essentially unable to hold their breath for an extended amount of time compared with healthy individuals. Therefore, the duration of an opercular spread can represent an honest signal of a male’s body condition (Schreck, 1990; Abrahams et al., 2005).

The signals that are emitted as a result of aggressive displays, such as duration and intensity of opercular flaring, are not solely for the purpose of the other males, as females eavesdrop on these displays in order to choose a suitable mate (Doutrelant & McGregor, 2000; Desjardins et al., 2012; Bertucci et al., 2014). By observing the intensity of displays between sparring males, females are able to gather important information on the health of potential partners as well as their prospective life success, i.e. aggressive individuals are better at defending territories and monopolizing resources (Dzieweczynski et al., 2014b). This female-orientated male selection highlights the importance of the male opercular display and, in turn, the labyrinth organ, in determining the likely success of a male attracting a suitable mate. Others, however, have questioned the significance of opercular display intensity in mate choice. For example, Dzieweczynski et al. (2014a,b) found that female B. splendens actually preferred ‘lover’ males (docile individuals) compared with ‘fighter’ (aggressive individuals), reasoning that the former are less likely to injure females during mating. Similarly, Kuperberg et al. (2009) reported that female B. splendens have no preference towards males that exhibit an intense opercular spread. Instead, it was suggested that females are more attracted to other, subtler traits. Tail beating, for example, was the preferred method of display amongst male B. splendens in the presence of a female audience (Dzieweczynski & Perazio, 2012). This display may act as an alternative measure of male vitality without the energetic costs associated with opercular flaring. Indeed, males that display at a high intensity have fewer eggs amongst their bubble nests, having invested too much energy in displaying rather than caring for the eggs in their nest (Clotfelter et al., 2006). Nests already containing eggs (Fig. 8) are important for the females of various fish species and it is possible that the level of male parental care is a more attractive trait (Knapp & Sargent, 1989; Sikkel, 1989; Forsgren et al., 1996). For example, female common gobies Pomatoschistus microps (Krøyer 1838) prefer males who are more likely to ventilate their young when DO is low (Jones &
Reynolds, 1999). Nest fanning is typical amongst males of nest building Anabantoid species (Kuperberg et al., 2009; Huang & Chang, 2011), therefore, the extent to which a male cares for the bubble nest, rather than the intensity of their display, may be a more important criterion when investigating mate-choice.

PARENTAL CARE

Parental care is dominant throughout the anabantoids, occurring in 16 out of 19 genera (Rüber et al., 2006). The forms it can take are also remarkably diverse, ranging from substrate spawners (Sandelia Castelnau 1861; Cambray, 2004), to plant (Osphronemus Lacépède 1801; Rüber et al., 2006) and bubble nesters (Pseudosphromenus Bleeker 1879; Chandran et al., 2013). Mouth-brooders are also common (Betta Bleeker 1849; Cole et al., 1999), whilst there are some species that display no parental care altogether and simply free spawn (Ctenopoma Peters 1844; Cole et al., 1999). Parental investment amongst Anabantoid species is less varied, however, and is largely orientated towards the males with relatively few examples of female and biparental care (Rüber et al., 2006; Zworykin, 2012).

Stagnant fresh water is home to most, if not all, bubble-nesting fish species (Hostache & Mol, 1998; Rüber et al., 2004). Theoretically, the stress of aquatic hypoxia in a static and confined environment favours the development of enriching bubble nests that facilitate successful embryonic development and allow sufficient oxygen availability. Conversely, species that have adapted to fast-flowing streams generally prefer mouth-brooding as bubble nests are harder to create in strong water currents (Oppenheimer, 1970). The relationship between parental form and environment in reality, however, is not always so clear. Rüber et al. (2004) found many species of mouth-brooding and bubble-nesting Anabantoid species in the same body of water.

Based on the assumption that free spawning is the plesiomorphic parental condition of the anabantoids (Rüber et al., 2006), it is probable that bubble-nesting evolved first from this state and other parental forms (like mouth-brooding) subsequently followed.
The labyrinth organ is not only fundamental to the development of bubble-nesting, but is also a central component of later parental care iterations. The organ accommodated the shift towards an investing form of parental care that enhanced offspring survivorship, which allowed further extensions of parental care that reflected particular environmental niches, be it increased surface predator presence or water currents. It is possible that mouth-brooding initially started as a result of extended nest disturbances from predators, whereby eggs were retained for longer during oral transport to ensure protection (Rüber et al., 2004).

Bubble-nest building by male fishes is one of the most commonly associated brood-guarding methods amongst anabantoids (Bailey & Burgess, 1999) and the development of this behaviour is coupled with the presence of the labyrinth organ. During the reproductive period, species like male *B. splendens* will gulp air from the surface and mix it with mucus found in the buccal cavity, exhaling mucous-laden bubbles amongst surface vegetation to create a floating bubble nest (Fig. 8) (Kang & Lee, 2010). The male fish will mate with a female beneath the nest, placing eggs amongst it or allowing them to free float upwards once copulation is complete. The male will nurture and care for the fertilized eggs and newly hatched larvae throughout this period until they leave (Bronstein, 1982). The bubble nest provides additional benefits to the embryos such as added protection from bacterial infection and supplying oxygen and nutrients (Jaroensutasinee & Jaroensutasinee, 2001; Kang & Lee, 2010). Even after hatching, bubble nests serve a purpose. Larvae use wart-like appendages on their heads to attach themselves to the bubbles within the nest to provide added protection from predators (Britz & Cambray, 2001).

AUDITORY SENSITIVITY AND COMMUNICATION

Fishes have evolved a diverse selection of mechanisms for acoustic communication, allowing individuals to emit and hear sounds throughout various contexts, *i.e.* during social interactions or when under attack (Kasumyan, 2009). Species are classed as either hearing generalists or specialists, the latter having enhanced auditory sensitivity and broader frequency ranges relative to the former (Yan, 1998). Largely found in freshwater, hearing specialists owe their enhanced hearing capabilities to specialized structures, which acoustically couple air-filled cavities to the inner ear (Ladich, 2000).

Some Anabantoid fishes are capable of producing stridulating sounds during social interactions, grinding their pharyngeal teeth to get the desired effects (Bischof, 1996; Ladich & Yan, 1998). Members of the genus *Trichopsis* Canestrini 1860, however, have developed a novel method of sound production through rapid pectoral fin beating that is regularly used during agonistic interactions (Daugherty & Marshall, 1976; Ladich & Yan, 1998). Indeed, the unique structure of the SBC found within *Trichopsis* and other Anabantoid species greatly enhances hearing abilities and facilitates the development of such behaviours (Yan, 1998). The SBCs ability to retain air, lateral location to the inner ears and thin membranous layers ensure that it is highly sensitive to changes in sound pressure, which can then be transmitted directly to the ear (Ladich & Yan, 1998).

Several Anabantoid species are hearing specialists, producing broadband sounds with high-pitched frequencies (0.8–2.5 kHz) and being sensitive to high-frequency sounds (0.1–5 kHz). Anabantoids exhibit distinct interspecific differences in hearing
limits (Ladich & Yan, 1998). This is probably due to differences in the size of the SBC rather than to structural differences of the inner ear (e.g. number of hair cells). Indeed, smaller species belonging to Macropodus Lacépède 1801 and Trichopsis can only take small air bubbles into their pharyngeal cavity, which provide higher resonant frequencies and so greater hearing sensitivity than species that retain larger bubbles (Ladich & Popper, 2001).

Species such as B. splendens and M. opercularis primarily rely on visual cues to communicate and only incidentally through sound. Despite this, these species share similar hearing sensitivities and inner-ear morphology to species that rely primarily on vocal communication. This suggests that enhanced hearing abilities in the anabantoids evolved prior to, or independently of, the evolution of the sound-producing mechanism observed in Trichopsis. Based on this assumption, it is fair to say that the SBC is primarily an adaptation to oxygen-depleted water and the improvement of hearing appears to be, at most, a by-product of this process rather than an additional means of communication (Ladich & Popper, 2001). Enhanced auditory detection for fishes, especially in murky water, is advantageous. Shallow water has a high attenuation rate for low frequencies effectively meaning individuals can only hear if the source is very close (Rogers & Cox, 1988). Whilst quiet environments such as ponds or lakes provide a great opportunity to listen out for your surroundings, at least when compared with noisy and turbulent areas found on coasts or reefs. The connection between inner ear and air-filled cavities such as the SBC favours this and allows fish to detect sudden pressure waves emanating from either approaching predators or changes in water currents that otherwise would be undetected due to background noise (Amoser & Ladich, 2005).

Species that have evolved to extend their auditory sensitivity thus increase their chances of survival through greater predator and prey detection (Ladich, 2000). Although established as an ABO, the labyrinth apparatus has provided an opportunity for Anabantoid species to take advantage of the sedentary habitats that they are typically found in and develop an additional predator detection measure and alternative means of communication.

CURRENT TRENDS AND OUTLOOK

DOMESTICATION

Betta splendens offer perhaps the most well-known example of domestication in the anabantoids. Selectively bred for hundreds of years, domesticated B. splendens strains bear little resemblance to their wild relatives, with huge variations in fin size, structure and body colour (Tlusty, 2002; Sriwattanarothai et al., 2010). Strains bred for sport fighting, in particular, are known for their heightened levels of aggression (Verbeek et al., 2008). It is not yet clear, however, what the effect of such behaviour is on air-breathing behaviour amongst these fishes.

Verbeek et al. (2008) reported that fighter strains have a proactive coping style towards stress and when faced with an inescapable stimuli such as receding water, immobilize themselves almost immediately whereas other strains continue to struggle. Immobilization is an adaptive response linked to an individual’s metabolic rate, i.e. by barely moving in a hypoxic environment, individuals increase their likelihood
of survival. Successful fighter fish are reared in isolated tanks in order to stimulate abnormal levels of aggression and this raises an important question as to the effects of chronic isolation on fishes: is there a behavioural adaption (e.g. change in air-breathing frequency), or is there a physiological adaption (e.g. change in labyrinth organ morphology) to reflect their preference for aggression? Verbeek et al. (2008) noted the importance of hormones such as serotonin on the proactive approach to stress, although this was in relation to non-social stimuli rather than during male–male interactions. Thus, future research needs to highlight the effects of domestication during male–male interactions through the consideration of air-breathing behaviour, an adaptation known to facilitate energetically demanding behaviours.

INVASIVE SPECIES

The release of invasive species can have a profound effect on the ecology of communities. Novel traits enable such species to outcompete native rivals over already limited resources. This effect is particularly common amongst aquatic ecosystems, where newly introduced exotic fish species significantly alter native fish populations (Sanches et al., 2012). For instance, the giant gourami Osphronemus goramy Lacépède 1801 is well known for its high fishery and aquaculture value and has been introduced throughout South-East Asia with great success (Morioka et al., 2013). The rapid growth rate of the species, however, together with its voracious feeding habits and air-breathing capabilities, have provided a competitive advantage over native species (Knight, 2010). This effect has been accentuated further by O. goramy’s ability to carry pathogens to which native species are highly susceptible (Whittington & Chong, 2007).

Species such as B. splendens and M. opercularis are particularly popular in the international aquarium trade. This has led to the issue of aquarium dumping into local freshwater bodies in non-native countries that has also affected native species (Magalhaes & Jacobi, 2013). In particular, there have been reports across Australian media outlets where B. splendens have been found in large numbers in fresh water, specifically in Fogg Dam and the Adelaide River floodplain. Betta splendens ability to outcompete and prey upon other native species, as well as possibly introduce disease, has raised great concerns amongst the local human population (Bray, 2011). Hybridization is an additional issue associated with invasive species, whereby species mate with their wild equivalents diluting the wild genetic stock and possibly resulting in genetic extinction of such species (Pimentel, 2011).

Anabantoid fish are air-breathers and this trait, along with parental behaviour and territorial aggression, can provide a competitive edge over native species. They are able to ensure the survival of their young through keen parental care (e.g. bubble-nesting or mouth-brooding) and, with the labyrinth organ, are better able to survive in stagnant or even polluted freshwater bodies, where other species would struggle (Rahim et al., 2013; Knight & Balasubramanian, 2015).

POLLUTION

South Asia and Africa have witnessed a rapid human population increase and subsequent urbanisation in recent years. Excessive use of pesticides, industrial chemicals and fertilizer has followed suite, polluting large sections of fresh water through agricultural
or industrial run-off and significantly affecting the species that inhabit these regions
(Natarajan, 1981; Dutta & Munshi, 1985; Afsar et al., 2012). Anthropogenic noise
compounds this further by evoking stress, masking auditory senses and damaging audi-
tory organs in species that depend heavily on alternative means of communication.
Commercial and small-scale fisheries accentuate this effect by exclusively targeting
Anabantoid species (Morioka et al., 2010).

Such factors might suggest that the anabantoids are in a particularly precarious
position. Ecological surveys, however, indicate otherwise: these aspects have had
only a minor effect on population sizes and that their labyrinth organ actually allows
them to survive and even thrive under these conditions (Liengpornpan et al., 2007).
For instance, Welcomme & Vidthayanon (2003) found that T. trichopterus was found
throughout polluted regions of the Mekong River. Whilst Ling et al. (2004) reported
that the fish composition of Bakong River and its tributaries were dominated by
the anabantoids, seemingly able to flourish within the systems stagnant, organically
polluted waters. In addition to these findings, there are many more reports of vari-
ous Anabantoid species flourishing in river systems rife with effluents throughout
South-East Asia (Kowasupat et al., 2012a,b; Rahim et al., 2013).

Perhaps such studies are overlooking the subtle consequences of aquatic pollution.
Indeed, research typically concentrates on linking the effects of toxicants to an organ-
ism’s physiology, specifically as to whether it induces mortality. Exposure to minor
concentrations of contaminants, however, may not overtly harm an organism and may
only slightly alter how it reacts in its surroundings, thus influencing its behaviour.
Given that concentrations of pollutants are rarely high enough to induce mortality and
that behaviour serves as an important link to physiological processes, investigating an
organism’s behaviour may be ideal for studying the subtle effects of environmental
contamination (Scott & Sloman, 2004).

The use of pharmaceutical products such as contraceptives, antidepressants and
antibiotics is on the increase. These medicinal compounds are capable of entering
aquatic systems through waste-water treatment plants, remaining biochemically active
and resulting in noticeable effects on the morphology, physiology and behaviour
of organisms residing within (Dzieweczynski & Hebert, 2012). Behaviours that are
reliant upon hormones such as courtship displays and aggression are especially suscep-
tible to these substances (Zala & Penn, 2004). Thus, exploring behavioural responses
appear ideal for assessing the effects of aquatic contaminants on fish populations.
For instance, Clotfelter & Rodriguez (2006) investigated the effects of exposure to
environmentally relevant concentrations of phyto-oestrogens on male B. splendens
and found that it suppressed aggressive behaviour. Whilst exposure to endocrine
disrupting chemicals (EDC) such as 17α-ethinylestradiol (EE2, commonly used in
contraceptives) can reduce behavioural consistency amongst B. splendens (Hebert
et al., 2014) and their ability to communicate with multiple individuals simultane-
ously (Dzieweczynski & Buckman, 2013).

Several studies have also indicated the negative effect of selective serotonin reuptake
inhibitors (SSRI) such as fluoxetine, an active ingredient in Prozac, on fish behaviour.
For instance, Lynn et al. (2007) found that fluoxetine reduced display intensity
amongst male B. splendens, whilst others have reported its effect on movement and
levels of aggression between conflicting males (Bogdan et al., 2012; Dzieweczynski &
Hebert, 2012; Kohlert et al., 2012). Forsatkar et al. (2014) found similar impairments
amongst female B. splendens following exposure to fluoxetine, significantly reducing
overall reproductive performance. Of particular interest, Greaney et al. (2015) found that fluoxetine exposure altered male *B. splendens* ability to communicate with multiple individuals simultaneously, being unable to alter the duration of an opercular display regardless of the audience type. Moreover, exposed males reduced opercular displays duration when faced with a rival, essentially reducing aggression amongst these individuals. Conversely, the number of tail beats produced by a male, a more docile behaviour associated with courtship displays, was unaffected by fluoxetine exposure. These findings suggest that fluoxetine exposure has a context dependent effect on fish behaviour and more importantly, suggests broader implications beyond that of the contaminated individual, extending across the network and possibly interfering with the fitness of the species. By decreasing aggression through fluoxetine exposure, inaccurate information on an individual’s quality and fighting ability will be conveyed to a female. Female *B. splendens* show preference towards less aggressive males (Dzieweczynski et al., 2014b) and this could enhance the reproductive success of affected males that would otherwise be overlooked (Greaney et al., 2015).

Given their resistance to waste-water treatment processes, pharmaceutical compounds are now ubiquitous across aquatic ecosystems. As such, there are wide implications to an organism’s physiology, e.g. reduced immune function (Ardia & Clotfelter, 2006) and disrupted reproductive development (Hano et al., 2011). It is the subtle effects on behaviour, however, that is appears to be most detrimental in at least *B. splendens*. Inadvertent pharmaceutical pollution is affecting mating success by interfering with the reproductive system; males are not as aggressive or are effectively communicating with rivals and target females. Consequently, females are not reaching a reproductive state nor is territory defence being maintained, which may lead to the collapse of established reproductive hierarchies. Future research needs to concentrate further on the effect of such compounds on fish species on various levels of exposure. Organisms in the wild may experience fluoxetine and other SSRIs at an acute or chronic level and by investigating this, a true understanding of the effects of SSRI exposure can be gained (Greaney et al., 2015).

CONCLUSION

Anabantoid fishes have bimodal respiration, with aquatic respiration *via* the gills supplemented by aerial respiration at the water surface, using the labyrinth organ. The evolution of the labyrinth organ was probably driven by the hypoxic conditions in which these species live. Since its formation, the labyrinth organ has provided the means for the anabantoids to diversify and thrive where unimodal water breathing fishes could not. The implications of the presence of the labyrinth organ, however, are significantly more far-reaching, affecting the morphology, behaviour and physiology of the anabantoids.

Intense defence displays significantly increase the oxygen requirement of displaying males, which is met by increased synchronous air-breathing trips. This subsequently affects male mating success as females can observe displays between rivals, using them as an indicator of male quality. Additionally, air-breathing has influenced the evolution of a diverse range of parental care behaviours, most notably bubble-nesting and as a by-product of its evolution, air-breathing has enhanced the hearing abilities of the
Anabantoid species to provide an alternative form of communication and additional methods of predator detection.

The advantages provided by the labyrinth organ, however, have been shown to have a detrimental effect where Anabantoid species are invasive. The characteristics that make these species able to inhabit hypoxic conditions can also provide them with a competitive advantage over native species and seemingly a resistance to the effects of pollution. Although studies indicate anabantoids are found in polluted areas, the effect of this pollution is little explored, beyond mortality as an endpoint. Indeed, research into pharmaceutical pollutants, such as antidepressants, reveals a substantial effect upon aggression and communication within *B. splendens*. Reduced aggression and an inability to communicate to multiple individuals has wider consequences extending across the social network and potentially interfering with the fitness of the species.

We are grateful to D. Jones for granting permission for using the photographs in Fig. 3. A. King provided useful discussions.

References

Electronic References

