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Movement of the embryo is essential for musculoskeletal development in
vertebrates, yet little is known about whether, and why, species vary.
Avian brood parasites exhibit feats of strength in early life as adaptations
to exploit the hosts that rear them. We hypothesized that an increase in
embryonic movement could allow brood parasites to develop the required
musculature for these demands. We measured embryo movement across
incubation for multiple brood-parasitic and non-parasitic bird species.
Using a phylogenetically controlled analysis, we found that brood parasites
exhibited significantly increased muscular movement during incubation
compared to non-parasites. This suggests that increased embryo movement
may facilitate the development of the stronger musculoskeletal system
required for the demanding tasks undertaken by young brood parasites.
1. Introduction
Movement is essential for successful embryonic development across vertebrates
[1,2]. Embryonic movement shapes the development of an animal’s musculo-
skeletal system and ranges from sporadic twitching of muscle tissue in the
early stages of development, to coordinated motions akin to walking or
flying closer to hatching [3,4]. While embryonic movement has been acknowl-
edged as vital in embryogenesis and growth, most research focus has been on
identifying and mitigating the molecular causes of low movement. Little atten-
tion has been given to understanding how and why movement affects the
embryo’s form and function, despite evidence that movement can affect
phenotypic expression [3]. Paralysing chick embryos, for example, causes mal-
formation of joints, reduced muscle tone and stunted bone growth [1,5,6].
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Conversely, experimentally manipulated hyperactivity
increases the density of primary muscle fibres in chick
embryos, which is a key factor determining the potential
for post-natal muscle growth [2]. As with adult animals,
embryonic ‘exercise’ causes the muscle to become stronger
and larger [7,8]. This presents a possible mechanism by
which animals that require exceptional muscular strength in
early life might achieve the necessary musculature.

One such group of animals is the avian brood parasites.
Obligate avian brood parasites are birds that lay their eggs
in the nests of other species (hosts), forcing them to raise
the parasitic offspring [9]. This strategy requires specialized
physiological and behavioural adaptations in the eggs and
young to survive in the host nest [10,11]. Some of these adap-
tations could be shaped by embryonic movement. For
example, shorter incubation periods and stronger eggshells
have independently arisen across multiple brood parasite
lineages [11,12], and greater strength and stamina are
required to hatch from these stronger structures [13,14]. The
musculature for this task must be developed in the relatively
short ontogenetic period within the egg [9]. Additionally, to
fledge successfully, many brood-parasitic young must
ensure that they receive most, or all, of the food provisioned
by the foster parents [15,16], by either out-competing or kill-
ing the host young [9,17,18]. These strategies are physically
strenuous and require a level of strength, coordination and
energy expenditure that is not usually seen in altricial off-
spring (i.e. species that hatch in an underdeveloped state
and are reliant on direct parental care). Embryo movement
could, therefore, provide mechanical stimulation for the
development of a stronger musculoskeletal system to support
a parasitic lifestyle, and result in the convergent acquisition of
higher rates of embryonic movement in distantly related
parasitic species.

Here, we tested the hypothesis that increased embryonic
movement assists avian brood parasites to achieve the necess-
ary muscular and skeletal development needed for both the
tasks of hatching from thicker eggshells and, in highly viru-
lent species, killing or out-competing their nest-mates. We
measured the rate of embryonic movement over the course
of incubation across a range of brood parasites, their hosts
and their non-parasitic relatives. This allows us to test the
prediction that avian brood parasites should exhibit a
higher embryonic movement rate (EMR) relative to closely
related non-parasitic species.

While most brood parasites tend to hatch from stronger
eggshells than other species, other aspects of their early life
physical demands differ between brood-parasitic species,
and this variation is largely associated with their level of viru-
lence (defined by [19]). The chicks of highly virulent parasites
remove or destroy host eggs or chicks [19,20], whereas less
virulent brood-parasitic species use physical size advantage
and exaggerated begging behaviours to outcompete host
nest-mates and receive sufficient provisioning from the host
parents [19,21]. Eviction of host young, a strategy used by
many highly virulent parasitic species, likely imposes a sig-
nificant strain on the skeleton of the newly hatched parasite
chick, and this could potentially cause skeletal damage if
not compensated by increased muscular support, or denser
or more ossified bones [22,23]. Evidence of increased muscu-
lature in a virulent brood parasite has been observed in the
chicks of common cuckoos (Cuculus canorus), which have a
higher density of muscle fibres in their musculus complexus,
the hatching muscle in their necks, compared to non-parasitic
birds [24]. This is speculated to be an adaptation for hatching
from significantly thicker eggshells, but may also facilitate the
eviction of host eggs and chicks. Given the evidence that
muscle development is shaped by embryonic activity in
birds, the increased embryonic movement provides a plaus-
ible mechanism by which denser and stronger muscles,
including the musculus complexus, could be developed by
young common cuckoos and other parasitic species.

This range of behaviours exhibited by parasitic chicks
inspires predictions about differences in embryonic move-
ment among parasite species. Specifically, if increased
embryonic movement increases the strength capabilities of
hatchlings, then highly virulent parasitic species—i.e. those
which require greater physical exertion to eject or kill host
young—should show a further increase in their rate of
embryo movement compared to less virulent parasitic
species. However, the muscular demands of less virulent
parasitic species should be greater than those of non-parasitic
species, since less virulent species must still outcompete host
young, typically through heightened begging.
2. Results
Using a non-invasive method to measure embryonic muscle
twitching, we recorded EMR as the number of embryo move-
ments per minute, repeatedly measured over the period of
incubation, in 437 eggs from 14 species of birds, including
five host–parasite systems from three continents. The incu-
bation period was divided into five stages to standardize
embryonic development (electronic supplementary material,
figure S1 and table S1), and egg size was accounted for in
the analyses. While egg size improved the fit of the model,
it did not significantly predict EMR (see statistical methods).
After controlling for phylogenetic relatedness (figure 1), we
found that brood parasites had a significantly higher overall
rate of increase in EMR over the course of incubation (slope
of interaction between parasite status and incubation stage)
compared to non-parasitic species (phylogenetically con-
trolled mixed model (PMM), slope ± s.e. = 7.28 ± 1.85, t =
3.94, p = 0.002; figure 2). Phylogeny explained a small percen-
tage of the observed variance in EMR (H2 = 0.17 ± 0.09),
indicating that EMR is not strongly predicted by species pos-
ition within the phylogeny (i.e. species relatedness). This
supports the hypothesis that reproductive strategy (parasitic
versus parental) is the main determinant of EMR over the
course of incubation, as opposed to phylogenetic relatedness.
Across all species, EMR significantly increased with incu-
bation stage (PMM, estimate ± s.e. = 16.11 ± 1.08, t = 14.89,
p < 0.001; figure 2).

When we compared individual species pairs of hosts and
parasites, linear mixed models (LMMs) showed differences
between most brood parasite species and their hosts, in the
rate of increase in EMR over the incubation period. For
instance, common cuckoos had a significantly greater
increase in EMR across incubation compared to their hosts,
great reed warblers (Acrocephalus arundinaceus) (slope ±
s.e. =−7.03 ± 2.66, t832 =−2.64, p = 0.008; figure 3a), and also
compared to one of the two non-parasitic cuckoo species
recorded, white-browed coucals (Centropus superciliosus)
(slope ± s.e. = 12.36 ± 5.64, t735 =−2.19, p = 0.03; figure 3a),
but not the other, African black coucals (Centropus grillii)
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Figure 1. Phylogenetic tree showing the species in the PMM. Symbol shapes match brood parasites (underlined and red in online version) to the host species (black, not
underlined) that they parasitize. Constructed from the ‘Tree of Life’ database using the R package ‘rotl’ [13,14]. Branch lengths set at 1. (Online version in colour.)
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(slope ± s.e. = 9.25 ± 5.98, t765 = 1.55, p = 0.12; figure 3a). This
suggests that the demands of hatching and virulence in
common cuckoos may have driven their relatively high EMR.

Similarly, lesser honeyguides (Indicator minor) increased
their EMR over incubation at a significantly higher rate
than their hosts, black-collared barbets (Lybius torquatus)
(LMM, slope ± s.e. = 15.36 ± 7.10, t189 = 2.16, p = 0.03;
figure 3b). The increase in EMR of lesser honeyguides was
also significantly higher than that of the congeneric, greater
honeyguides (Indicator indicator) (slope ± s.e. = 17.81 ± 8.67,
t182 = 2.05, p = 0.041; figure 3b). Unlike the lesser honeyguides
and their hosts, the slope of increase of EMR in greater
honeyguides did not differ significantly from that of their
hosts, little bee-eaters (Merops pusillus) (slope ± s.e. = 2.91 ±
7.67, t191 = 0.38, p = 0.70; figure 3b), which themselves had a
relatively high EMR.

Of the two low virulent parasites measured, brown-
headed cowbirds (Molothrus ater) exhibited a significantly
steeper slope of increase of EMR over incubation than their
hosts, prothonotary warblers (Protonotaria citrea) (LMM,
slope ± s.e. =−12.95 ± 5.90, t88 = 2.20, p = 0.03; figure 3c).
However, stage 1 cowbirds also had an EMR that was
lower than correspondingly aged prothonotary warbler
embryos, resulting in the steep slope of increase seen in cow-
bird eggs (table 1). The other low virulence species, pin-tailed
whydahs (Vidua macroura), did not significantly differ in the
slope of EMR increase compared to their hosts, common
waxbills (Estrilda astrild) (LMM, slope ± s.e. = 10.90 ± 8.11
t99 = 1.34, p = 0.18; figure 3d ). Overall, among parasitic
species, we did not find a significant difference between
high virulence and low virulence species (LMM, slope ±
s.e. = 6.29 ± 4.26, t486 = 1.48, p = 0.14; table 1 indicates which
parasite species are categorized as high or low virulence).
The mean EMR of each species of parasite and host at each
stage of incubation is shown in table 1.
3. Discussion
Brood-parasitic species displayed a significantly higher over-
all rate of embryonic muscle movement over the course of
incubation, compared to both their host species and to
other closely related non-parasitic species. There was also
interspecific variation in the rates of increase in embryonic
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movement over the incubation period, with the EMR of most
brood-parasitic species increasing at a significantly steeper
rate as incubation progressed, compared to their hosts or clo-
sely related non-parasitic species. The steeper slope of
increase in parasites meant that the differences were particu-
larly evident in the later stages of their incubation, where
brood parasites exhibited especially high EMRs. In particular,
common cuckoos, lesser honeyguides and brown-headed
cowbirds demonstrated exceptionally high rates of embryo
movement near the end of their incubation period. These
findings are consistent with our hypothesis that embryonic
movement may evolve in response to selection for the
demands of brood parasitism on both the embryo before
hatching, and on the newly hatched chick.

Brood parasitism imposes selection for greater strength
both before hatching and shortly after hatching. Increased
embryonic movement in brood parasites prior to hatching
is consistent with our hypothesis that embryonic movement
may facilitate developing the muscular strength required to
hatch from exceptionally strong eggs. A steeper increase in
embryonic movement throughout incubation and, particu-
larly during late incubation, could facilitate the
development of the musculature and stamina required to
break out of a stronger eggshell [7]. As thicker eggshells
have been shown to be common across brood parasites
regardless of virulence [25], the lack of difference seen
between highly virulent and less virulent species might be
explained by strong selection for hatching ability, which
may overshadow selection for the post-hatching demands
of these species. Upon hatching, other demands of brood
parasitism (e.g. out-competing nest-mates, or killing or evict-
ing host chicks) are unlikely to be mutually exclusive, as
similar muscle development could be required for these
tasks. Many muscle complexes have multiple functions for
which the rate of development could be optimized. The mus-
culus complexus in the neck of birds is important for the
process of hatching and has been shown to be enlarged in
the necks of common cuckoos [26]. However, this muscle com-
plex is also important for begging behaviour as it regulates
dorsal flexion of the neck and coordination of head movement
[27] and so affects competitive interactions between nestlings.
This may give an advantage to nest-mate-tolerant parasite
species, such as brown-headed cowbirds, which are known
to beg more intensively than non-parasitic species [28,29].

We did not find any consistent difference in the slope of
increase of EMR between high virulence and low virulence
species of brood parasites, contrary to our second prediction
that muscular demands of virulent species would require
greater embryonic movement than less virulent parasite strat-
egies. The lack of a correlation between EMR and virulence
may be due to considerable interspecific variation in parasitic
virulence strategies and, therefore, variable selection on mus-
culature. For example, the natural history of virulence differs
between the two species of honeyguides we studied, despite
their phylogenetic closeness. Both species kill host nest-mates
shortly after hatching by biting and shaking them vigorously
[30]; however, the demands of killing host young differ
greatly between greater and lesser honeyguides. Greater hon-
eyguide females puncture host eggs when they lay their own
such that few host eggs hatch, reducing the demands on the
parasite chick to remove their competition [30,31]. Adult
lesser honeyguides do not puncture host eggs, meaning
that lesser honeyguide young must themselves kill the full
brood of host young of up to four chicks [32]. Moreover,
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the chicks of greater honeyguides are larger than the chicks of
their respective hosts, while lesser honeyguides parasitize
black-collared barbets, whose nestlings are approximately
twice the mass of a lesser honeyguide chick [33]. This may
explain why lesser honeyguides had significantly higher
rates of embryonic movement than greater honeyguides,
and why greater honeyguides did not have higher rates
than their hosts. That these two honeyguide species are con-
generic [34] makes this difference particularly striking, as it
suggests that embryonic behaviour has the potential to
evolve rapidly in response to differences in host behaviour
and morphology. Additionally, little bee-eaters, hosts of the
greater honeyguides, exhibited relatively high rates of
embryo movement compared to other non-parasite species,
a curious finding for which we currently do not have an
explanation.

We propose that increased EMR is a shared characteristic
in the embryonic development of brood parasites that has
evolved convergently between lineages. The factors influen-
cing variation in embryonic movement across incubation
are less well understood, as are the mechanisms that control
this movement. A potential factor which could facilitate
higher embryonic movement in parasites could be the ther-
mal properties of parasite eggs, which have been shown to
retain heat for longer periods during incubation breaks due
to their thicker shell [35]. This could influence any potential
temperature-mediated activity of the embryo. Hormones in
the egg may play a role in regulating embryo movement.
There is evidence that maternally deposited androgens in
the egg effect the embryonic growth and early life behaviour
of birds, although their role in embryonic movement has not
been studied, to our knowledge [36,37]. The phylogenetic
position did not significantly predict a species’ EMR,
suggesting that variation in EMR is driven primarily by
intrinsic or environmental factors rather than common ances-
try; however, an extensive genetic study would be required to
determine the genes involved or whether embryonic move-
ment constitutes an epigenetic source of variation on
embryo development, depending on how embryonic move-
ment is regulated [1,38]. The five species of brood parasites
we studied represent four of the seven known evolutionary
origins of brood parasitism in birds [39,40], suggesting
that this is potentially an embryonic adaptation to a brood-
parasitic lifestyle that has evolved convergently in
independent brood-parasitic lineages, as has been proposed
for other physiological traits [11,41].

The behaviour of brood-parasitic hatchlings is extraordi-
nary and demonstrates their exceptional physical abilities.



Table 1. Mean rate of embryo movement (EMR) per minute and standard errors at each incubation stage (1–5), for parasitic species and their hosts. Parasites
are in italics. Designation of high virulence or low virulence of parasite species based on [19].

species
stage 1 (EMR,
mean ± s.e.)

stage 2 (EMR,
mean ± s.e.)

stage 3 (EMR,
mean ± s.e.)

stage 4 (EMR,
mean ± s.e.)

stage 5
(EMR,
mean ± s.e.)

common cuckoos (high

virulence)

39 ± 6.7 55.9 ± 4.2 83.0 ± 3.8 111.6 ± 4.4 129.8 ± 9.0

great reed warblers 35.1 ± 4.4 61.5 ± 4.2 76.3 ± 4.1 92.5 ± 4.3 98.1 ± 9.4

lesser honeyguides (high

virulence)

24.5 ± 3.5 65.8 ± 7.8 82 ± 13.1 101.2 ± 15.9 148 ± 25.4

black-collared barbets 40.5 ± 9.4 73.8 ± 11.5 73.8 ± 8.43 81.3 ± 6.9 98.0 ± 10.5

greater honeyguides

(high virulence)

76.6 ± 29.7 52.6 ± 13.9 70.7 ± 16.4 88.3 ± 16.8 100.4 ± 16.8

little bee-eaters 64.2 ± 12 74.0 ± 10.3 70.7 ± 9.1 97.8 ± 13.0 135.0 ± 18.9

brown-headed cowbirds

(low virulence)

39.1 ± 7.8 49.8 ± 12.8 53.3 ± 6.3 88.6 ± 12.8 123.8 ± 16.9

prothonotary warblers 56.1 ± 13.6 54.0 ± 7.0 104.3 ± 12.2 88.4 ± 13.8 54.5 ± 18.3

pin-tailed whydahs (low

virulence)

NA 50.0 ± 25.6 62.2 ± 12.1 42.7 ± 8.1 84.0 ± 25.6

common waxbills 6.0 ± 1.5 43.7 ± 12.1 59.9 ± 8.3 69.0 ± 10.7 81.3 ± 4.6
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Here, we have shown that the behaviour of the embryo
during development could shape the physiology of brood
parasites, and so may be a key factor in the successful exploi-
tation of their hosts. While the evidence is consistent with our
theory of an adaptive function of embryo movement, this
cannot be conclusively determined with these data, and it
is possible that other aspects of a parasitic lifestyle could
induce or select for greater movement. Future research
could address this by directly measuring the consequences
of greater EMRs on the muscle density and performance of
individuals of these parasitic species. For example, if this
embryonic trait has an adaptive benefit for brood parasites,
then we would expect increased embryo movement to
increase the parasitic chick’s efficiency at evicting or killing
host offspring. Additionally, it would be informative to
measure embryo movement in other species that experience
challenging nestling social environments, such as nest-sharing
colonial breeders or species with large asynchronous clutches
and/or high rates of siblicide [42,43]. Further to their relevance
for brood-parasitic species, our findings suggest that embryo
movement may be a generally overlooked process in the evol-
ution of the diverse life histories, forms and behaviours
observed in birds.
4. Methods
(a) Embryo movement quantification
EMR was measured using a portable digital egg monitor (‘Egg
Buddy™’, Avitronic Services, Abbotskerswell, Devon, UK). The
use of the Egg Buddy for biological research was validated by
[44], and it has been used to monitor embryo development and
heart rate in both birds and reptiles [45–47]. To quantify the fre-
quency of EMR, the egg is placed on a rubber cup inside the egg
monitor chamber. The monitor transmits a beam of infrared light
through the egg and detects any disruption to the beam caused
either by movement of the embryo, or the contraction of blood
vessels in response to a heartbeat [44]. Embryo movement is
reliably detected in altricial embryos after approximately the
first quarter of the incubation period [46]. However, as all eggs
in this study were compared to each other at the same incubation
stages (see staging description below), any reduced accuracy in
earlier incubation would not influence comparisons. In early
incubation, heart rate is detectable before muscle twitching
becomes evident. However, as the size and activity of the
embryo increases, heart rate measurement becomes more chal-
lenging to record due to the increased muscular movements of
the embryo [44]. Therefore, we did not record heart rate.

Each subject egg was placed into the chamber of the monitor
immediately after removal from the nest or incubator and
allowed to acclimatize in the darkened interior for approximately
30 s. Longer acclimation periods were not performed to prevent
the egg from excessive cooling. The egg was positioned with the
long axis of the egg roughly perpendicular to the laser beam,
with slight adjustments made to the angle if the movement
was not initially detected. If no movement was detected after
this, no measurement was made to minimize disturbance.
Embryo movement was displayed in real-time on the screen of
the egg monitor as an animated bird symbol which changed con-
figuration when movement was detected, and a 60 s video of the
screen was recorded immediately following acclimation and sub-
sequently analysed. The number of embryo movements was
counted from watching the video recordings at 0.5× speed.
This was performed by either SCM, MC or MR, and blindly to
the specimen ID.
(b) General field methods overview
Nests were monitored in situ at several field locations (detailed
below). Nests of the host or focal (non-parasitic relatives of para-
sites) species were located and visited frequently during the early
egg-laying stage to detect brood parasitism. Eggs were marked
with a pencil or felt-tip marker upon completion of the clutch,
for later identification. When a nest was parasitized, it was not
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disturbed for the first 2 days of incubation so as not to interfere
with natural egg rejection or acceptance by host parents. Eggs
were visited from the second or third day of incubation, depend-
ing on species, and measurements of embryo movement were
taken for the parasite egg and then a randomly selected host
egg. Where possible we measured only a single egg per host
clutch to avoid pseudo-replication since host eggs in the same
clutch are non-independent. However, due to the limited nest
availability of zitting cisticolas and little bee-eaters, two eggs
were sampled from the same clutch. This was accounted for stat-
istically by including nest identity as a random factor in all
analyses. The measurements were taken close to the nest to mini-
mize the time that eggs were out of the nest, and eggs were out of
the nest no longer than 10 min in total. The same host and para-
site eggs were then measured again every second day until
hatching. Repeat measures were not obtained for some eggs
due to clutch loss from predation, nest destruction or host rejec-
tion. The feasibility of estimating exact incubation start dates
varied with species and field site, and therefore sometimes an
estimate of embryo age by candling the egg and assigning a
stage system was required [48–50] (electronic supplementary
material, figure S1 and table S1). Egg stage was estimated by
visual examination of the embryo via candling and a stage of
development assigned based on the embryo’s size and appear-
ance, the albumen coloration, blood vessel quantity and air cell
size. Further details and illustrations of embryo stages are avail-
able in the electronic supplementary material, figure S1.

(c) Field sites and study species
(i) Zambia (dry season)
Data were collected on greater honeyguides (Indicator indicator)
and their hosts, little bee-eaters (Merops pusillus), and lesser hon-
eyguides (Indicator minor) and their hosts, black-collared barbets
(Lybius torquatus), at a field site (16°450 S, 26°540 E) on farms in the
Choma District of Zambia during the dry season (September to
November) of 2016, 2017 and 2018. For further details of the
field site, see [51]. Nests were found by local field assistants.
Black-collared barbet nests were located in tree cavities and
accessed by openings that were cut into the cavity wall above
the nest and covered by strips of bark between visits. The nests
of little bee-eaters were located in underground tunnels dug
into the side of the burrows of aardvarks (Orycteropus afer).
These nests could be accessed by digging down to the nest
from the ground above, as described in [30].

Nests were visited and embryo movement recordings taken
every 2–3 days during the incubation period. Nests were often
located after the beginning of incubation, and incubation stage
(electronic supplementary material, figure S1) was estimated by
candling the egg and assessing embryo development. Exact incu-
bation day was unknown for these nests. Embryo movement
measurements were taken from the parasite egg in each nest
located, along with a live host egg if present. Greater honeyguide
females often puncture the host eggs when they lay their own
[51], and so most parasitized nests of little bee-eaters did not con-
tain live host eggs; therefore, measurements were also taken from
non-parasitized little bee-eater nests. We were unable to obtain
measurements from greater honeyguides during early incubation
(prior to incubation stage 2).

(ii) Zambia (wet season)
Data were collected from eggs of pin-tailed whydahs (Vidua
macroura), and of its hosts, common waxbills (Estrilda astrild).
Additional data were collected from zitting cisticolas (Cisticola
juncidis), which are common hosts of the cuckoo finches (Anom-
alospiza imberbis). However, low parasitism rates during the 2019
and 2020 breeding season meant insufficient data were collected
on this parasite to include it in this study. Data from zitting
cisticolas were included as a non-parasitic species for phylo-
genetic comparison.

These data were gathered at the same field site described
above during the wet season (February to March) of 2019 and
2020. Both common waxbills and zitting cisticolas build nests
close to the ground in grassy habitat. Nests were found by
local field assistants and were measured every 2 days. Due to
differences in the length of incubation between species, the incu-
bation period from onset of incubation until hatching for each
species was divided into five stages, from stage 1 to stage 5 (elec-
tronic supplementary material, figure S1). Incubation stage was
estimated by candling, and incubation commencement and
hatching date were known for most nests (electronic supplemen-
tary material, figure S1). No measurements were made for pin-
tailed whydahs at stage 1 due to difficulty locating nests and
low parasitism rates during these years.

(iii) Czech Republic
Data were collected from common cuckoos (Cuculus canorus)
parasitizing great reed warblers (Acrocephalus arundinaceus).
The nests of great reed warblers were located in narrow strips
of reed beds surrounding ponds in the south of the Czech Repub-
lic (48°54’N, 16°59’ E). Parasitized nests were visited either every
day or every 2 days during incubation and eggs were briefly
removed and brought to the bank of the pond for measurement.
The eggs were replaced with decoys while measurements were
taken and returned to the nest within 10 min. Abandoned
cuckoo eggs were transferred to the laboratory and incubated
until hatching. For details about the incubation procedure, see
[26]. Measurements were taken from these eggs also. Measure-
ments from incubator-hatched eggs (n = 18 of 68) and wild-
hatched eggs were not statistically different in EMR (t41 = 0.906,
p = 0.366) so these data were combined for analysis. The chicks
which hatched from these eggs were returned to other nests at
the field site.

(iv) Illinois, USA
Measurements were collected on brown-headed cowbirds (Molo-
thrus ater) from a nest-box breeding population of their hosts,
prothonotary warblers (Protonotaria citrea) (for further details
see [52]) during the summer of 2018. Nest-boxes were sited on
the edges of a swamp on public land in Illinois, USA (37°24’N,
88°53’W) and had high rates of parasitism during the study
year (approx. 80%). The egg monitor was set up on dry land
close to the nest-box and eggs were removed for less than
10 min for measurements. For nests that contained two cowbird
eggs, both parasitic eggs were measured since they should be
laid by different females. Eggs were measured every 2 days
across incubation.

(v) Tanzania
Measurements were collected on socially polyandrous African
black coucals (Centropus grillii) and socially monogamous
white-browed coucals (C. superciliosus) in the Usangu wetland
in south-western Tanzania (8°410 S, 34°50 E). Coucals build
dome-shaped nests in dense vegetation. These nests were located
either by observing birds carrying nesting material or incubating
birds back to the nest, or by following birds equipped with radio-
transmitters (for further details see [53,54]). The egg monitor was
set up ca 5–10 m from the nest, and eggs were removed for less
than 10 min for measurements. Eggs were measured every 4
days during incubation.

(vi) United Kingdom
Measurements were taken on the eggs of domestic homing
pigeons (Columba livia) at Royal Holloway University of London.
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Pigeons nested in purpose-built housing lofts (2.1 × 1.8 m) on the
campus of Royal Holloway University of London, and recordings
were taken at the lofts on alternate days between incubation days
3 and 20. Husbandry details are available in [55].

(d) Statistical methods
All statistical analyses were conducted in R [56] using ‘R Studio’
[57]. EMR was defined as the number of movements per minute
recorded by the egg monitor. Measurements at stage 1 that
recorded 0 EMR were excluded from analysis, as false zeros
were possible due to the small size of the embryo.

We used phylogenetically controlled analyses for our com-
parison of EMR between these 14 species, as species cannot be
considered statistically independent due to shared ancestry
[58,59]. The inclusion of two species of non-parasitic cuckoos
(white-browed coucals and black coucals) provided within-
group phylogenetic control for common cuckoos, as the latter
are more distantly related to their hosts than the other paired-
species (host–parasite) in these analyses [60,61]. The honeyguides
(Indicatoridae) are a sister group to the barbets (Lybidae) which
are hosts to lesser honeyguides, and hence this host provided a
suitable comparison. The phylogenetic relatedness of our focal
species was constructed and downloaded from the Open Tree of
Life and using the ‘rotl’ package [14] in R v. 3.3.2 (figure 1a).
Using this phylogenetic tree, we constructed PMM [62] to compare
the rate of EMR per stage between all species using the package
‘sommer’ R v. 4.0 [63]. The phylogenetic element of this model
allowed us to separate the percentage of variance in EMR that is
potentially explained by phylogeny, from any variance that
could be attributed to parasitic lifestyle, or other life-history factors.
The phylogenetic signal of the trait (EMR) was calculated as the
percentage of variance explained by phylogeny as a proportion
of the total variance in EMR and is presented as H2. This value
is comparable to Pagel’s lambda in other analyses [64]. The
‘emtrends’ function using the package ‘emmeans’ R v. 1.4.6 [65]
was applied to the PMM to compare the slope of increase in
EMR over incubation stage in parasites and non-parasites.

PMMs were constructed with EMR as response variation and
a combination of incubation stage, parasitic status, fresh egg
mass, breeding latitude and mean incubation length as predictor
variables. Akaike’s information criterion (AIC) scores of these
models were then compared to determine the best-fitting
model to explain the data, where the best-fitting model was at
least 2 AIC points lower than the next lowest AIC. Neither
mean incubation length nor mean breeding latitude of species
(values taken from [66]) were retained in the final model as
neither were statistically significant and did not improve the fit
of the model by greater than 2ΔAIC. Egg mass significantly
improved the fit of the model by more than 2 AIC points and
was retained in the final model, but was not statistically signifi-
cant (1.17 ± 0.94, t =−1.24, p = 0.26). Egg identity was included
as a random variable in all models to account for repeated
measurements from the same egg at different incubation
stages. Similarly, nest identity was included as a random variable
to account for eggs that were sampled from the same host nest.
The model with the best fit for predicting EMR in these species
included fresh egg mass and the interaction of parasitic status
and incubation stage as fixed factors, and egg identity and nest
identity as random factors.
Species-to-species comparisons were also undertaken using
separate LMM (using the lmer function in the package ‘lmerT-
est’) [67] to examine potential differences between each parasite
species and their respective hosts. Common cuckoos, great reed
warblers and both coucal species were compared in a single
LMM, and post hoc testing was used to compare species to each
other. As with the prior analyses, egg and nest identity were
included as random effects to account for repeated measure-
ments from the same eggs or clutch. Species identity and the
interaction between parasitic status and incubation stage were
included as predictor variables. As with the phylogenetic
models, species breeding latitude was not found to be a signifi-
cant or informative predictor for EMR and was therefore
dropped from the final model.
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material [68].
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